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Conserative interpolation (remapping) is
one of the essentialparts of most Arbitrary
Lagrangian-EuleriafALE) methods. It recom-
putesthe conserative quantities(suchas mass,
momenta,or enegy) from the Lagrangiancom-
putationalmeshto theimprovedone.In thisshort
reportwe extendtheideaof the sweptintegration
introducedin [1] to the mesheswith changing
connectity. We focus to the Voronoi meshes
in 2D. One numericalexampleis presentedo
shaw, thatpropertiesf this algorithm(consera-
tivity, linearity and boundpreseration) remains
unchangedor meshesvith differenttopology

Theremappingoroblemis following —we have
two differentmeshegqoriginal and new) andthe
unknavn underlyingfunction. We do not know
thefunctionitself, only meanvaluesin the origi-
nal cellsareknown. In [2], we extendideaof [1]
to acompletehree-ste@lgorithm: 1) reconstruc-
tion — recoversthe unknavn functionin a piece-
wise linear form; 2) integration— integratesthe
reconstructedunctionin thenew cellsto getnewn
meanvalues;and3) repair— ensuregocal-bound
preserationby local massredistritution.

In the reconstructiorstage,the slopesin each
cell arecomputedusing certainmethod,with or
without limiters. The only conditionis to pre-
sene a global linear function. In practicaltests,
it is cornvenientto usethe monotonicitypreserv-
ing Barth-Jespersdimiter [3] radicallyreducing
the numberof possiblelocal-boundviolations.

During the integration stagenenv meanvalues
arecomputed. The mostnaturalapproachs the
exactintegrationovertheoverlappingareasf the
original andthe new meshesUnfortunately this

processis quite inef cient and makes the com-
plete algorithmvery slowv. We usethe approxi-
mateintegration methodbasedon the sweptre-
gionidea— the massin the new cell canbe com-
putedfrom the massof the correspondingrigi-

nal cell just by addingor subtractingmasseof

all sweptregions. By sweptregionswe meanthe
areagde ned by the smoothmavementof all cell

edgesto their new positions. For this algorithm
no intersectionsareneededmorewer it is edge-
basedandsomuchmoreef cient thanthe previ-

ousmethod.

Unfortunately our approximate integration
doesnotguarantesatishctionof thelocal-bound
preseration condition, so the third stage— re-
pair—is neededlt locatesthe problematicareas,
wherethe boundsare violated, and correctsthe
valuebackto thelocal extreme. Dueto the con-
senativity demand,t takesthe massneededor
repairfrom (or addsadditionalmasgo) theneigh-
boring cells proportionallyto the masseswhich
cansafelybetaken (added)rom theseneighbors
without violating their local bounds.

This completealgorithmis efcient, linearity
and local-boundpreserving stable,and applica-
bleto generalunstructuredneshedothin 2D [2]
and 3D [4] with the sametopology Therealso
is a question,what to do, if the meshtopology
changegluringtherezoningprocess.Typical ex-
ampleof reconnectioris displayedn the rst Fig-
ure (a). Four cells of the original meshchanged
theirtopology oneof originaledgesvasremaoved
andanew oneaddedmakingneighborgwo nev
cellswhich have notbeenneighborshefore.

Let us note, that such topology changedoes
not affect the reconstructiorand repair process,
only theintegrationstagehasto bemodi ed. Our
approachis to split the sweptintegration stage
into two steps. We computethe “center of re-
connection™ eitherintersectiorof removed and
creatededgesor averageof their vertices. Then,
we shrink the removed edgeto this centralpoint
and perform sweptintegration of all ve edges
involved (the removed edgeandfour edgescon-
nectedto its vertices)— see rst Figure (b). In
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Onereconnectionn 2D mesh(a). Solvingin two
steps: shrinking old edges to one point (b) and
expandingit to thenew edges(c).

the secondstep, we expandthe central point to
the creatededgeand perform similar ve swept
integrations. The situationat the boundaryand
the computatiorof the cell neighborhoodor ex-
tremacomputationmustbe treatedcarefully, for
the completealgorithm to satisfy all the condi-
tionsstatedn the previousparagraph.

To demonstratéts propertieswe presenthere
the cyclic remappingof the“color function” with
value 1 inside a circle in the computationaldo-
main center and 0 outside(secondFigure). The

(@) (b) (c)

Discontinuouscolor function” remappedvera
seriesof sine-meingVoronoigrids. Initial values
(a), valueson the middlemesh(b), and valueson
the nal mesh(c).

initial Voronoimesh(a) hasregularly placedgen-
eratorsandthen-th mesh(in timet" = n=n,5) is
obtainedirom generatorplacedby formulas

Xg = xg+ a(t") sin(2pxy) sin(2pyy) ,
Ve = Yo+ a(t") sin(2pxp) sin(2pyy) ,
t=5 for t 1=2

A= (1 =5 for t> 1=2.

Duringthegeneratos movementthegrid moves
andchangest's connectiity up to the middle of
thesimulation(b), thenit returnsbackto theorig-
inal one(c).

Theperformedsimulationsandtheir numerical
errorsprove thealgorithm's corvergenceandsat-
isfactionof all requiredpropertiedor the quality
remappingalgorithm.
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